270 MHz Dual-Balanced InGaAs Low Noise Photodetector

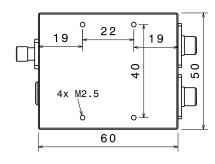
Features

- High transimpedance gain: 3500 V/W (1550 nm)
- Low noise: below -130 dBm/Hz
- NEP: $20 \,\mathrm{pW}/\sqrt{\mathrm{Hz}}$ typ.
- 270 MHz bandwidth
- AC coupled; low cutoff below 5 MHz
- Wavelength range: 1000 nm to 1700 nm
- Fiber Coupled: FC receptables
- Output: 50 Ω SMA plug
- Wide range single supply: 11 to 15 V

Typical Application

- Interferometry
- Can be used single-ended as well

(Photo shows mechanically equivalent product.)


General Description

The BPD270MA5 is an AC-coupled high-speed dual-balanced InGaAs photoreceiver. It features a high transimpedance gain, very low noise and a $-3 \, \text{dB}$ bandwidth of $> 250 \, \text{MHz}$. The low frequency AC cutoff is set to $> 5 \, \text{MHz}$ to help suppress low frequency noise like acoustic vibrations.

The BPD270MA5 comes in a rugged aluminum case with two FC fiber receptables and a 50 Ω SMA output. It operates from a single 11–15 V DC supply. OEM versions without a case are available upon request.

Mechanical Properties

- Fiber coupling: FC receptables for FC/PC and FC/APC connectors
- RF output: SMA (female)
- Supply voltage input: Push-pull LEMO plug (included with diode)
- Small form factor: $50 \times 60 \times 20 \text{ mm}$
- Mounting: 4x M2.5 threaded holes on bottom (screw length 4 mm)

Electrical Connectors

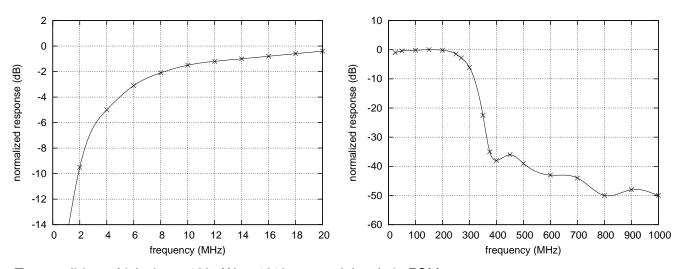
Supply connector (front view). The case is electically connected to ground.

There are two types of supply cable, one has 2 wires and one has 5 wires. The corresponding color scheme of these cables is:

Cable type	Positive supply	Supply ground
2-wire	white	brown, shield
5-wire	yellow	grey, shield

Wieserlabs UG (haftungsbeschränkt) web: www.wieserlabs.com

e-mail: info@wieserlabs.com


The information provided in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed for its use, for inaccuracies and omissions, nor for any infringements of patents or other rights of third parties that may result from its use. Prices and specifications are subject to change without notice. Trademarks and registered trademarks are the property of their respective owners.

Specifications

Parameter	Conditions	Min	Тур	Max	Units
DC Characteristics					
Supply Voltage $\left(V_S ight)$		11	12	15	V
Supply Current			110		mA
AC Characteristics					
3dB Bandwidth		250	265	285	MHz
AC Low Frequency Cutoff			5	6	MHz
Output IP3			28		dBm
2nd Harmonic	$P_{out} = 0 dBm$		-40		dBc
	$P_{out} = -10\mathrm{dBm}$		-53		dBc
3rd Harmonic	$P_{out} = 0 dBm$		-45		dBc
	$P_{out} = -10\mathrm{dBm}$		-47		dBc
Noise Spectral Density	1 MHz – 250 MHz		-130	-125	dBm/Hz
	> 350 MHz			-150	dBm/Hz
Noise Equivalent Power (NEP)	1 MHz – 250 MHz, 1550 nm		20	35	$\mathrm{pW}/\sqrt{\mathrm{Hz}}$
Output Impedance			50		Ω
Optical Characteristics					
Input Wavelength Range		1000		1700	nm
Transimpedance Gain	wavelength 1550 nm		3500		V/W_{optic}
	wavelength 1310 nm		3300		V/W_{optic}
Common Mode Rejection Ratio		20	30		dB
Maximum Input Power	(damage threshold)	10			mW

Typical Performance Characteristics

Frequency response: RF output power versus frequency

Test conditions: Light input 100 $\mu\mathrm{W}$ at 1310 nm, modulated via EOM.